GMMLoc: Structure Consistent Visual Localization With Gaussian Mixture Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Gaussian Mixture Models

In this paper, in order to improve both the performance and the efficiency of the conventional Gaussian Mixture Models (GMMs), generalized GMMs are firstly introduced by integrating the conventional GMMs and the active curve axis GMMs for fitting non-linear datasets, and then two types of Fuzzy Gaussian Mixture Models (FGMMs) with a faster convergence process are proposed based on the generaliz...

متن کامل

Parsimonious Gaussian mixture models

Parsimonious Gaussian mixture models are developed using a latent Gaussian model which is closely related to the factor analysis model. These models provide a unified modeling framework which includes the mixtures of probabilistic principal component analyzers and mixtures of factor of analyzers models as special cases. In particular, a class of eight parsimonious Gaussian mixture models which ...

متن کامل

Gaussian Mixture Models

Definition A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a weighted sum of Gaussian component densities. GMMs are commonly used as a parametric model of the probability distribution of continuous measurements or features in a biometric system, such as vocal-tract related spectral features in a speaker recognition system. GMM parameters are estimated ...

متن کامل

Deep Gaussian Mixture Models

Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently describe complex relationships. In this work, Deep Gaussian Mixture Models are introduced and discussed. A Deep Gaussian Mixture model (DGMM) is a network of multiple layers of latent variables, where, at each layer, the variables follow a mixture of Gaussian distributions....

متن کامل

Visual Abstraction of Wildlife Footage using Gaussian Mixture Models

In this paper, we present a novel approach for clip-based key frame extraction. Our framework allows both clips with subtle changes as well as clips containing rapid shot changes, fades and dissolves to be well approximated. We show that creating key frame video abstractions can be achieved by transforming each frame of a video sequence into an eigenspace and then clustering this space using Ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Robotics and Automation Letters

سال: 2020

ISSN: 2377-3766,2377-3774

DOI: 10.1109/lra.2020.3005130